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In the mixing of a jet with a cross-stream, it is found that in the near field, 
defined as the region of the flow from the jet exit to a distance of a few diameters 
downstream of this exit, a considerable amount of dynamical adjustment takes 
place. This near-field region characterizes the subsequent behaviour and develop- 
ment of the jet, its wake and the cross-stream in the vicinity of this mixing 
region. The rapid evolution of the flow gives rise to a pair of bound vortices 
attached to the lee side of the jet boundary, to fast development of the turbulent 
and mean vorticity, to a vortex-shedding system, and to the largest rates of 
entrainment of cross-stream flow into the jet. Furthermore, it  is found that the 
geometrical configuration of the boundaries at the jet exit plays an important 
role in the mixing and development processes. 

A n  intrinsic method is proposed for the delineation of the flow boundaries 
between the jet and the cross-stream. Calculations of mass, momentum and 
vorticity fluxes have been made. The vorticity flux gives evidence of the rapid 
stretching and tilting of the vorticity vector field in the near-field region. 

1. Introduction 
Some atmospheric phenomena whose understanding may be improved through 

studies of a jet in a cross-wind are those involving thermal plumes generated at  
the earth's surface and rising to levels at  which a significant cross-wind exists. 
Although buoyancy is the upward driving force in these flows, they will have 
many important dynamical features in common with isochoric jets. 

Wake turbulence has been observed downwind of updrafts in thunderstorm 
systems. Observations indicating that the updrafts act as obstacles to the 
horizontal air flow were reported by Fankhauser (1971). The bound vortices 
identified in the present paper seem to play an important role in the development 
of clouds observed by Fujita & Grandoso (1968), and by Fankhauser, to split 
into clouds rotating in opposite directions. Shed vortices are commonly observed 
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downwind of forest fires (Whittingham 1959) and may be the result of vortex 
shedding from the rising plume of hot air. Whirlwinds and waterspouts observed 
downwind of volcano plumes (Thorarinsson & Vonnegut 1964) show some of the 
properties of shed vortices. Vortex streets observed, through satellite photo- 
graphy, in clouds below the inversion layer downwind of subtropical islands have 
been attributed by Chopra & Hubert (1964) to orographic effects, but may also 
be a consequence of updrafts and downdrafts related to mountain peaks on these 
islands. 

Various forms of mixing of a round jet with a cross-stream can be found in a 
number of industrial applications. The flow issuing from a smoke stack in a 
horizontal wind has been of great interest owing to environmental implications. 
It is also known that at  take-off and landing of VTOL aircraft, when the axis 
of the engine makes an angle with the wind, the mixing of the exhaust gases with 
the wind falls in the realm of this problem. In addition there are many com- 
bustion applications that require the mixing of two streams at  right angles. 

There does not exist agreement in the literature concerning the universal 
behaviour in the dynamics of plumes and jets in cross-streams, although syste- 
matic investigations of these flows began nearly forty years ago with those by 
Sutton (1932) and by Bosanquet & Pearson (1936). The methods of investigation 
used are essentially one-dimensional or two-dimensional in nature and can be 
summarized as follows : fitting empiricism to experimental measurements of 
plume shape and rise (Bosanquet & Pearson 1936; Lucas 1958; Holland 1953); 
using dimensional reasoning and fitting experimental results of special laboratory 
models (Hewett, Fay & Hoult 1971; Pratte & Baines 1967; Kamotani & Greber 
1972), and using theoretical methods and assuming special idealized flow con- 
ditions such as top-hat velocity profiles, the linear entrainment suggested by the 
circular jet, and axisymmetry in the entire development (Morton, Taylor & 
Turner 1956; Priestley 1956; Laikhtman 1961; Turner 1969; Fay 1973). 

The lack of universal agreement in these analyses seems to stem from two 
important factors. First, the initial conditions of the flow at the jet exit play a 
major role in the entrainment and, subsequently, in the development of the flow. 
Second, the mixing of a jet in a cross-stream, being essentially a three-dimensional 
vortical flow, does not lend itself to two-dimensional mathematical treatment. 
The essential motivation for the present work is the need to provide physical 
evidence related to these important factors. 

2. Physical description of the jet in a cross-stream 
A composite diagram of the mixing of a uniform parallel cross-stream with 

velocity U ,  and an isochoric flow issuing from a round pipe of outside diameter 
D with an average exit velocity U, is shown in figure 1.  The co-ordinate system 
(x,y,z), the velocity components U ,  V and W ,  and the pitch and yaw angles 
of the velocity vector are shown. All distances are measured from the centre of 
the pipe exit. 

The uniform cross-stream decelerates as it approaches the jet boundaries as 
if its passage were blocked by a rigid obstacle, the difference being that the 
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FIGURE 1. Flow- description and co-ordinates. 

boundaries of the jet are compliant and entraining. Figure 2 shows our results 
for the overall velocity and its components along x’ = z / D  a t  z’ = z/D = 1.00 
on the symmetry plane y‘ = y / D  = 0. The velocity distribution of the cross- 
stream along the leading-edge streamline is compared with that o fa  flow around 
a rigid circular cylinder with diameter 1.5D, which is approximately the maxi- 
mum width of the deformed jet a t  z‘ = 1.00. The basic difference between the 
two profiles can be easily reconciled by a shift of the jet’s leading edge by an 
amount of t D  a t  the elevation z‘ = 1.00. For higher values of z’, the angle 
4nt-a between the jet axis and the direction of the cross-stream cannot be 
ignored. I n  figure 1, as the cross-stream approaches the jet boundary and 
decelerates, it deflects around the boundary surface AB with partial mixing with 
the jet flow. The experimental results show that the V component from A to B 
is everywhere outward while the U component of the cross-stream increases 
around the boundary AB, much the same as around a rigid cylinder of the same 
cross-section. Figure 3 shows that the U distribution reaches approximately its 
maximum value of U,,,/U, = 2.0 a t  the two planes z’ = 0.50 and 1.00, where 
the jet angle a is still very small, as in the case of a rigid cylinder. 
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FIGURE 2. Pseudo-stagnation streamline (y’ = 0, Z’ = 1.00); 
VlU, = O(symmetric). 0, Q / U , ;  0, 77/77,; A ,  WlU,. 

In the wake region BC a number of important effects take place. Most of the 
mean vorticity issuing from the pipe, tilted and stretched by the flow, bundles 
up into a pair of vortex tubes bound to this lee surface of the jet. Furthermore, 
a portion of this mean pipe vorticity and the additional vorticity generated a t  
the interface of the two flows rolls up into periodically shed vortices similar to 
those in the von K&rm&n-BBnard street. Together, these two vortex systems 
are responsible for most of the entrainment of cross-stream flow into the deflected 
jet and its wake. Also, in this region a significant amount of the initial pipe 
vorticity is converted into turbulent vorticity through the action of the Reynolds 
stresses. 

It is important to note at this point that the presence or absence of a rigid 
wall, in the x, y plane, a t  the jet exit is crucial to the behaviour of the whole flow, 
particularly in the near field. In  other words, the results of the mixing of a uniform 
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FIGURE 3. Locus of maximum U/U,  around the je t  
boundary. 0, z' = 0.5; 0 ,  z' = 1.00. 

stream with a flow from a hole in a wall, with that from a pipe with a flat-plate 
skirt at the plane of discharge and with that from a simple pipe will be quite 
different. The initial vorticity at  the jet discharge for a hole in a wall will be 
different from that for a pipe discharge. Second, for the case ofa hole in a wall and 
a skirted pipe, the vorticity i2 distributed in the boundary layer over the wall 
or skirt will also roll up, as it separates past the stagnation point, and affect 
the bound vortex system. Also, in the absence of a skirt a t  the pipe exit, the 
Helmholtz law on vortex-line continuity must prevail, and vortex shedding 
behind the rigid pipe must be continuous with that behind the jet. This will be 
demonstrated in 5 5.2. For a skirted pipe, the skirt will make it possible for the 
two shedding systems, below and above it, to be independent. 

3. Experimental equipment and procedure 
A pipe 2.54 cm o.D., 2.36 cm I.D. and 61 cm long located inside a rectangular 

test section of an air tunnel provided the flow of air for the jet. The spatial mean 
velocity at  the pipe exit was U, = 29.6 m/s. In  order to avoid buoyancy effects, 
the temperatures of the jet and the cross-stream were kept within 1 "C with the 
help of an air conditioner in the supply line of the jet. All the results in this paper 
pertain to this isochoric mixing with V,/Uw = 3-48, except for the shedding 
measurements in $5.2. The cross-stream velocity was U, = 8.5 m/s, in a low 
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FIGURE 5. The three-dimensional matrix array of measurement points. 

turbulence (1.2 %) tunnel 1.22 m high by 0.61 m wide and 6 m long. To simulate 
a natural environment, the tunnel walls diverged slightly to maintain a constant 
static pressure. The ratio of the pipe diameter to the tunnel dimensions was 
small, and the jet exit was kept far away from the tunnel walls a t  all times. 
Figure 4 (plate 1) shows the tunnel set-up. 

As the flow was three-dimensional, the mean angles were measured with a 
United Sensor three-dimensional probe 3.2 mm in diameter. This probe was 
calibrated in a special directional tunnel. The temporal mean velocity and 
turbulence levels were measured with a linearized DISA Constant-Temperature 
Anemometer after the wire had been oriented normal to the mean flow. The 
turbulent fluctuations were processed electronically to provide r.m.s. values, 
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one-dimensional spectra, shedding frequencies and scales of turbulence. The 
wires were 5pm in diameter and 1.25 mm in length. The mean voltage was read 
with a HewlettrPackard D.C. Digital Voltmeter, the r.m.8. value on a Ballantine 
True R.M.S. Voltmeter, the spectral densities with a General Radio Third 
Octave Real Time Analyzer, and the shedding frequencies with a Spectral 
Dynamics Narrow Band Real Time Analyzer with 3 Hz constant bandwidth. 

Figure 5 shows the three-dimensional array of measured points in this study. 
Every graduation in the co-ordinates XI, y' and z' corresponds to a measured 
point. The total number of measured points waa in the vicinity of 1000. 

4. Similarity considerations 
Similarity relations can be established from the x component of the Navier- 

Stokes equation and from simple radial equilibrium in the direction K normal 
to 5 shown in figure 1. They may be approximated as 

where P is the pressure, p the density and K the radius of curvature of the bent 
jet. This radial pressure gradient can be related to the pressure gradient in the x 
direction through multiplication by cos a. When one considers the flow outside 
the jet, including the transient wake, which is partly periodic owing to shedding 
and partly irregular owing to turbulence, the x component of the Navier-Stokes 
equation can be made dimensionless as follows: 

aPIaK -N pI u ; ~ K ,  (1) 

where U, = U/Um, t ,  = t /r ,  x, = xlL and y* = y/L, while T and L are the 
characteristic time and length scales, f is the frequency in the transient wake 
and v is the viscosity. 

For two of these flows to be geometrically, kinematically and dynamically 
similar, each of the dimensionless terms in this equation must be the same for 
the two flows. This implies that the coefficients 

must be the same. The bending geometry of the jet, expressed by L/K and a, 
must be the same and can be related directly to the momentum flux ratio of this 
flow (Eskinazi 1975). The momentum flux per unit area of the uniform cross- 
stream is pa U: while the momentum flux of the jet is 

where is the local velocity a t  the pipe exit. At a given distance z' downwind of 
the pipe exit KID', a and LID' will have specific values and the momentum ratio 
of the two streams can be expressed in terms of 
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Flow diameter (cm) 
Area (cm2) 
Volume flow rate, 5bj(m3/s) 
Space average velocity (m/s) 
Shape factor, p 
Bulk momentum flux (m4/s2) 
Kinematic viscosity (m2/s) 
Density (kg/m3) 
Jet Reynolds number, R, 
x vorticity flux, $nrz (m3/s2) (half-flow) 
Absolute vorticity flux, 5bnr (m3/s2) 

Spatial mean vorticity, 2r#n,/AUj = a, (s-1) 
(half-flow) 

Inside pipe 
D = 2.54cm (O.D.) 

D‘ = 2.36 (1.D.) 

4.37 
0.013 

Uj = 29.6 
1.085 
0.42 
1.58 x 10-6 
1.15 
4.40 x 104 
- 

Measured flow just 
outside the pipe 
Z’ = z/D = 0.04 

2.56 

0.013 

1.085 
0.35 
1.58 ~ . 1 0 - ~  
1-15 

- 

25.0 

- 
10.6 
16.6 

2570 

Free-stream velocity U, = 86m/s, R ,  = 1.36 x lo’, J = 12.1 

TABLE 1. Basic and initial flow parameters. 

where D’ is the inside diameter of the pipe and where p is the shape factor or 
the ratio of the momentum flux a t  the jet exit to the momentum flux of the mean 
flow at the same exit, equal to *n-Df2U3. From free-jet theory LID’ will be 
dependent on Ri = V, D‘/v. Thus from (3) and (4) we conclude that the initial 
dimensionless ratios that govern similarity in this non-buoyant flow are 

With the exception of the Strouhal number AS, which will be discussed in Q 5.2, 
all these quantities are listed in table 1, as the initial conditions of the flow. 

The pipe was not long enough to generate a fully developed flow. The pipe 
exit conditions were measured 1 mm downstream of the pipe exit, corresponding 
to z’ = 0.04. It was assumed that the shape factor remained the same in that 
small distance. Strictly speaking, this may not be true because the wall shear is 
suddenly relaxed, and this is accompanied by a momentum change. Values in 
table 1 have been used to make the results of this investigation dimensionless. 

5. Rolling-up and initial pipe vorticity 
5.1. The bound vortex system 

Before the exit, the pipe flow is everywhere in the z direction and the vorticity 
is everywhere in the x ,  y plane, normal to the radial direction. Thus the velocity 
and vorticity vectors are normal to each other. The mean vortex lines are 
concentric rings with the largest value of the vorticity at the pipe wall. In  the 
near field it becomes important to determine the behaviour of these rings as they 
emerge from the pipe. This behaviour can be explained through the special form 
of the convective acceleration a: 

a = ( Q . V ) Q  = +VQ2-QxSL, (6) 
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FIGURE 6. Velooity projection Q,/U, on planes normal to a. (a) a' = 0-50. (b)  2' = 1.00. 

where Q is the velocity and Q the vorticity. The two components of the term 
+VQ2, in a free jet, are radially inward and axially opposing the mean motion. 
The larger term -0 x Q is radially outward. Hence the free jet expands radially 
with axisymmetry and decelerates at the same time. 

With a cross-stream, owing to the bending of the jet, the plane of the vortex 
rings soon becomes inclined at  an angle y9 to the resultant velocity Q+U,. 
Reviewing the geometry of the acceleration terms, in this case, Eskinazi (1975) 
showed that this angle y9 will give in the cross-product a radial component 
which is symmetric (as in the case of the free jet) and equal to 

I -Q+Um]JQI cosy9 = 1-0 xQ1, 

and an axial component 

I -Q +U,l sin @ = [U, x Q l  
which is asymmetric because of its dependence on the sine of the angle. The 
resultant radial component -0 x Q + $0, Q2 will spread these rings in a sym- 
metrical way as in the case of the free jet, while the resultant axial component 
U, x Q -t iVs  Q2 will have its maximum negative value on the windward side 
of the ring and definitely larger positive values on the lee side, owing to the 
fact that U, x S2 is positive there. The values of this axial component at  the sides 
of the ring will be the same. 
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In  time, the ring will be swept with the fluid, decelerating on the windward 
side faster than at the centre and accelerating relatively on the lee side. This 
situation will persist with diminishing intensity during the entire development 
of the deflected jet as it asymptotically approaches a Beltrami flow, for which 
Q x S = 0. Each successive ring will do the same, so that on the lee side these 
rings will bundle up into two bound vortex tubes joined a t  infinity, making two 
counter-rotating helical spiral motions much like the tip vortices of aeroplane 
wings. It must be emphasized that the major part of the change from complex 
lamellarflow (Q .a = 0) toBeltrami flowtakesplaceinthevicinityofthepipeexit. 

Measurements of the three-dimensional velocity field, in the initial stages of 
the flow, and the calculated three-dimensional vorticity field support this 
behaviour. First, the two plots in figure 6 of the velocity projection 

on planes x’ = constant show this development of the bound vortex for the 
planes x’ = 0.50 and 1.00. Since the arrows shown in the figure are projections 
of the velocity vector, streamlines should not be inferred. The flow field is strongly 
three-dimensional and the streamlines, as well as having swirl in these planes, 
advance in the direction normal to the paper. The contours of VlU, in figure 
14 also support the presence of the bound vortex on the lee side of the jet. 

&, = (VZ+ W2)t 

5.2. The shed vortex system 

Analysis by the narrow-band spectrum analyser of the hot-wire output showed 
that, in addition to turbulence, shedding of a von KGm&n-BBnard vortex 
street occurred. Figure 7 is a typical wake energy spectrum, the largest peak 
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FIQURE 8. The shedding phenomenon. (a)  No skirt; S = fD/U,. (a) Skirt on; S’ = fD’lU,. 
Present results: 0, R ,  = 16000; 0 ,  R, = 12000; 0, R, = 8000; 0 ,  R ,  =5000;  
A, R ,  = 3000. ., McAllister (1968); 0, McMahon et al. (1971). 

corresponding to the shedding from one side of the jet. The secondary peak, at 
exactly twice the frequency, appears when the hot wire is in the vicinity of y’ = 0. 
This is the result of sensing vortices alternately shed from both sides of the jet. 

Figure 8 shows the variation of the Strouhal number for the shed vortices as a 
function of the velocity ratio q.5./Um, The upper curve on the figure shows data 
taken in the wake of the jet from a simple pipe issuing into a cross-stream. The 
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lower curve shows data from an experimental arrangement in which a flat 
rectangular metal plate or ‘skirt ’ was mounted flush with the pipe’s upper edge. 
The plate had a streamwise length of 0.32 m, a cross-stream (y direction) width 
of 0.25m and a thickness of 1-6 x lo-3m. The distance from the centre of the 
pipe to the leading edge of the skirt was 0.064 m. Note that S = f D/U, is plotted 
for the unskirted pipe and S‘ = f D’/U, for the skirted pipe. 

For the case of the unskirted pipe there seem to be two regimes, the change 
from one to the other occurring near L$/Uw = 5.5. Also, there is evidence that 
shedding from the jet above the unskirted pipe is dominated by shedding from 
the solid pipe because of the apparent lack of dependence of S on R, and q/U,. 
This is because the same shedding frequencies are measured in the jet wake as 
in the pipe wake, and ultimately because of the shape of tho resonance curve. 
The latter reason requires further explanation. For q/UW < 5.5, for the unskirted 
case the ratio of the frequency width at  the half-maximum of the shedding peak 
to the centre frequency is about 0.1, whereas the same ratio for the jet above the 
skirted pipe is two to four times larger. The width of the resonance curve is a 
result of random fluctuations from strict periodicity. The spread of these fluctua- 
tions should be greater from a jet than from a solid cylinder because of the turbul- 
ence at the jet boundary. For q./UW > 5.5 in the unskirted case the width of the 
resonance curve increases and the Strouhal number decreases. This indicates that 
the jet properties begin to influence the Strouhal number of the pipe-jet system. 

The shedding in the skirted case seems also to be characterized by two regimes, 
the change in regime occurring in this instance near UJU, = 3. The results of 
McAllister (1968), who used a water tunnel, and of McMahon, Hester & Palfrey 
(1971), who experimented with air, seem to agree with the current data for the 
skirted pipe. From the similarity considerations summarized in (5) one should 
expect that, for a given p, S should be a function of R, and q / U w .  These con- 
siderations should apply in only a minor way to the unskirted case, where the 
pipe dominates the shedding. 

The data for the skirted case largely support the conclusion that the shedding 
is nearly independent of R,. At q./U, = 12, McMahon et al. found no change in 
S’ when R, was changed from 52 000 to 26 000. 

6. Jet boundaries 
As in the case of any turbulent mixing process involving one or more streams, 

the mixing process here has no sharply defined boundaries. The changes in the 
flow properties and their derivatives are continuous. Nevertheless, some deri- 
vatives have typical behaviours that can be used as a criterion for defining a 
boundary. The schematic diagram in figure 1 shows three distinct regions in the 
entire flow: the free stream, the deflected jet and the wake, which in turn can be 
divided into three main parts, namely the turbulent wake due to separation and 
shear on the surface of the jet, the shedding wake due to the rolling-up of some 
of the mean vorticity a t  the boundary surface, and the bound vortex system 
attached to the trailing surface of the jet, which is reponsible for the entrainment, 
of free-stream and wake fluid into the jet. 
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FIUURE 9. Delineation of special regions along the line z’ = 1.00, y’ = 0. 

Figure 9 illustrates these regions. It shows a traverse from wake to free stream, 
in the plane x’ = 1-00 for y‘ = 0, of the following physical quantities serving to 
delineate the various regions : the turbulence level (q)/Q, the velocity distribution 
U/Um and the macroscale of the turbulence AID. From the following comparative 
behaviours of these distributions, a consistent method of defining the boundaries 
of the regions is proposed. Because of symmetry, 0, vanishes at  y r  = 0 and there- 
fore cannot be used as a comparative criterion in this plane. In figure 9 the 
(q) /Q distribution shows two peaks associated with regions of maximum shear. 
The first peak, at  zr 2: 2.5, is the shear region between the wake and the jet. The 
U/Um distribution also shows a large shear at  this point. It is expected also that 
the magnitude of the total vorticity is a maximum near this point. Strictly 
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FIGURE 10. Contours of 100 (q ) /Q  and maximum vorticity ridge on the plane z' = 0.5. 

_.- , vorticity ridge; - - -, turbulence ridge. 

speaking, the maximum turbulence, shear and mean vorticity do not necessarily 
occur at  the same point but they are sufficiently near to choose one of the 
maximum values to define a characteristic boundary. Figure 10 shows the 
contours of (a)/& in the plane x' = 0-5, where total vorticity values are alfio 
available. On this figure the ridges of turbulence and vorticity are also plotted, 
and may be seen to be nearly compatible. We need to emphasize, however, that 
(q)/Q values represent only that portion of the turbulent kinetic energy in the 
direction of the mean motion, whereas the vorticity ridge is based on the total 
vorticity. It is for this reason that we choose to dejine the boundaries of the jet 
by the ridge of the vorticity. Hence, at  y' = 0 the wake is in the region 0 < z' < 2.5 



Mixing of a round jet with a cross-stream 63 

on the x’ = 1-00 plane of figure 9. Also in the region 1-00 < z’ < 2.5 the z com- 
ponent of the velocity is small and negative, i.e. in the direction opposite to that 
of the free-stream flow. This is the entrainment region of the wake, where the 
flow is in fact inward with reference to the jet boundaries. 

As one crosses the inner boundary in figure 9, i.e. for 2.5 < z‘ < 3-75, the 
velocity U/Ua reaches a maximum, while (q}/Q and AID drop to another mini- 
mum. This region is characterized as the jet proper, the properties displaying 
similar behaviour to those in the free jet. At 2‘ = 3.76 the turbulence level 
reaches another maximum, delineating the outer boundary of the jet, while the 
mean velocity rises asymptotically to the free-stream value. Because of the 
presence of the jet, the free stream remains deflected for a significant distance 
z’ beyond this outer boundary. Also, in figure 9 the macroscale extrapolates, at 
z’ = 0, to the value of the pipe diameter. 

7. The general development of the flow 
The important effect of the geometrical configuration at the jet discharge on 

the flow development has already been discussed briefly in Q 2, but needs to be 
enlarged upon at this point. One finds considerable variations in the literature 
in the experimental results for the jet rise, or so-called ‘plume centre-line’, 
defined as the locus of the maximum velocity on each of the planes x f  = constant. 
To a large extent, this variation is attributed to the flow conditions a t  the jet 
exit. The jet rise resulting from a hole in a wall shows considerable disagreement 
with that resulting from a pipe discharge for three essential reasons. First, the 
momentum distribution (shape factor) of the jet at the time of issuance is 
different in the two cases. Second, the hole in a wall produces a potential core, 
adding stiffness and very low turbulence to the initial flow. Third, in the case 
of a hole in a wall, the vorticity developed in the boundary layer over the wall 
will roll up in the wake of the jet, in much the same way as in the case of the 
bound vortex arising from the vorticity rings inside the hole, except that the 
sign of the rolled-up vorticity will be opposite to that of the bound vortex system. 
When one faces the cross-stream, downstream of the jet, the left half of the jet 
(y‘ < 0) will have positive vorticity in the bound vortex, whereas the rolled-up 
vorticity from the wall boundary layer, spilled around the jet, will be negative, 
thus making the total circulation less than that of the jet from a simple pipe. 
Hence the entrainment on the lee side of the jet will be reduced. From a momen- 
tum flux argument, reduced entrainment implies a more compliant jet. This 
explains the difference between the jet rise in the Kamotani & Greber (1 972) 
experiment with a skirted jet and those in the experiments of Hewett et al. 
( i971) ,  Chassaing et al. (1974) and the present investigation, performed with a 
jet from a simple pipe. 

From the preceding discussion, one may deduce that the jet’s development 
and asymptotic geometry and state may depend a great deal on the initial flow 
conditions. Furthermore, since this three-dimensional and strongly vortical flow 
is as much influenced by the vorticity level as the momentum level, throughout 
its development, any intrinsic representation of its behaviour must take into 
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Y' 
FIGURE 11. Development of jet boundary and locations of Q,, and a,,,. 

account the vorticity axes as well as the momentum axis. This development is 
shown in figure 11.  Pratte & Baines (1967) were among the first to observe that 
the vorticity remains strong even at  1000 jet diameters downstream, while the 
velocity field has nearly decayed a t  that distance. 

Figure 11 shows three successive 2' cross-sections of the jet boundaries, as 
defined by the contour of the ridge of vorticity. The maximum values of the 
vorticity on that ridge are represented by points B and C. The locus of these 
points in successive x' planes represents the vorticity axes on both sides of the 
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XI 

FIGURE 12. Locus of maximum velocity and vorticity centres. 

flow. Point A on the figure represents the maximum velocity on each ofthe planes; 
and the locus of the points A represents the momentum axis of the jet, or the 
'plume centre-line'. We conclude that any intrinsic co-ordinate representation of 
this flow must include not only the path of the centres A ,  but also those of B and 
C.  I n  discussing the development of this flow, it is necessary to  discuss the 
development of the triangle ABC, which represents the intrinsic frame of 
reference for this flow. 

Figure 12 shows the development of these centres in three dimensions. For 
small q / U ,  and for small distances downstream, since A occurs on the symmetry 
plane the locus of A ,  given by a,, is on the x', z' plane and is shown as curve (c) 
on the figure. The loci of points B and C require a three-dimensional representa- 
tion. This is why their locations are represented by curve (a) ,  giving 6*(z') on 
the x', z' plane, and by curve ( b ) ,  giving 6,(y') on the x', y' plane. 

3 P L M  80 
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- 2.0 - 1.0 0 -2.0 - 1.0 0 

Y' Y' 
FIGURE 13. Contours of U/U,.  (a) x' = 0. (b)  z' = 0.25. (c)  x' = 0.50. ( d )  2' = 1.00. 
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Y' Y' 
FIUURE 16. Contourn of W/U, .  (a)  x = 0. (b)  z' = 0.25. (c) z' = 0.50. (d )  z' = 1.00. 
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8. Mean velocity contours 
Figures 13, 14 and 15 show contours of U/U,, V/Ua and W / q ,  as well as the 

jet boundary, for the planes x’ = 0,  0.25, 0.50 and 1.00. Of the four planes, only 
the last cuts the jet fully into the wake. It must be recalled that for a three- 
dimensional flow contours of constant velocity on a given plane are not stream- 
lines. This is one of the fundamental difficulties in the analysis and interpretation 
of three-dimensional flows. 

In  these contours one can identify six separate regions of flow. These regions 
are labelled A ,  . . . , E on the figures. In  region A one finds the jet flow proper, 
with high values of W/L$ and low values of U/q. ,  particularly in the planes 
x‘ = constant closer to the origin. For the planes x’ = 0.50 and 1.00 the jet has 
already bent sufficiently in the x direction to give rise to larger values of U/U,, 
accompanied by smaller values of W/U,. Region B is that of the cross-stream 
on the windward side of the jet. This region is characterized by a decrease in 
U / q ,  as the cross-stream approaches the leading surface of the jet, and is 
identified by the closed half-contours of U / q  for larger values of z’. Of the four 
x’ = constant cross-sections shown, the jet is stiffest (largest momenta) a t  
x’ = 0. On this plane a kind of stagnation point where U/Ui = 0 is observed at 
z’ = 2.00, while V/Ua < 0 and W/L$ < 0,  implying that on this stagnation 
streamline the free stream has decelerated completely in the x direction and its 
momentum has been converted into momentum in the z direction by the jet. 
As we look a t  succeeding planes x’ > 0, owing to the bending of the jet in the 
x direction U / q  is always non-zero in this region (B)  and in the plane of sym- 
metry y‘ = 0, and its value increases with increasing x’. 

The bound vortex is identified with the region marked C. The contours of 
U / q .  and V/Uw identify this region best. The V/Uw contours in figure 14 show 
flow ( V/Um < 0 )  in that region which is inward, i.e. opposite in direction to the 
remaining (outward) flow. The velocity V has been made dimensionless with Urn 
instead of q. in order to distinguish the influence of the jet on the free stream. In 
these contours there appear a t  x’ = 1-00 other small regions of positive and 
negative V/Um near y’ = 0 and 2-00 < z‘ < 3-00. These small regions are attri- 
buted to free-stream flow already trapped in the jet through a spiralling motion 
of the entiainment. Also V/Uw changes sign twice and U / q  becomes negative. 
The contours of R, in figure 17 (a)  show these regions as a reversal of R5. Finally, 
because of symmetry with respect to the plane y’ = 0,  the non-zero V/Um contours 
in figure 14 do not cross the ordinate. The image contours with opposite sign 
should be present on the y’ > 0 side of the flow. 

As the free stream moves around the surface of the jet, increasing its velocity, 
it is also deflected in the z‘ direction. This region ( E )  is distinguishable in figure 15 
and in the vorticity contours in figure 17 (a) .  The - z‘ motion is the induced effect 
of the bound vortex, which generates a counter-rotating motion in the free 
stream. 
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9. Mean vorticity contours 
The mean vorticity components were calculated from the velocity field by 

evaluating the circulation per unit area on planes normal to the co-ordinate 
system in the fine grid array of figure 5. The mean vorticity vector’s magnitude 
IS21 and components R,, Ry and Rz divided by the mean vorticity a t  the pipe 
exit, R, = 257Os-l, are plotted in figures 16-19. Figures 16 and 17(d) were used 
as a basis for defining the characteristic boundary of the jet. Since the last plane 
investigated was x‘ = 1.00, Q, was the only component that could be calculated 
on that plane. The vorticity ridge on each of the x’ planes was taken as the 
characteristic boundary of the jet. This is felt to be a more defensible definition 
than a boundary defined through the mean velocity contours as suggested, for 
instance, by Keffer & Baines (1 973), Jordinson (1956) and Slawson & Csanady 
( 1  967). Moussa (1976) has shown through a sequence of figures similar to figure 
10 that the boundary based on the vorticity ridge correlates well with the 
turbulence intensity ridge. As in the case of the velocity contours, a vorticity 
contour is not necessarily a vortex line. However, the points of maximum 
vorticity a t  every x’ do seem to represent the same vortex line, as evidenced by 
three-dimensional vector plots. 

At the pipe exit and on the plane x’ = 0, the lines of constant vorticity lQ//Rj 
are parallel to the pipe walls. If it  were not for the bending and diffusion of the 
jet, these lines would remain parallel. In figure 16 (a) ,  at z’ = z’ = 0, these lines 
start parallel to the pipe wall. Because of the stretching and tilting due to  
diffusion and the action of the cross-stream, the upper ends of the contour lines 
at xf = 0 begin to close. In subsequent planes, xf = 0.25 and 0.50, these contours 
begin to close a t  the lower end in an anticlockwise direction, forming the bound 
vortex on the yf < 0 side of the flow. In  figure 16(c) the point M is the point of 
maximum vorticity, located at  the trailing edge of the lobe of the jet boundary. 
Around M ,  the closed contours of vorticity, of the order of the jet-exit mean 
vorticity, identify the location of the bound vortex. The trend of this formation 
can be noticed even earlier at xf = 0.25, when the flow is presumably strongly 
dependent on the pipe exit conditions. In  the near-field planes, the largest share 
of the mean vorticity is in the z direction because of the severity of the tilting of 
the vortex lines. This is evident on comparing the values in figures 16 and 19. 
In  figure 16, the vorticity contours of the external flow, to the left of the jet 
boundary, diverge on the windward side of the jet surface and converge rapidly 
on the lee side of this surface. The divergence is due to the deceleration of the 
cross-stream, followed by compression of the vortex lines, whereas the con- 
vergence is due to the acceleration of the cross-stream on the lee side of the jet 
boundary, which is accompanied by a stretching of the vortex lines. 

Other important behaviour may be seen in figure 17. Because the s2, emanating 
from the pipe is opposite in sign in the two halves of the pipe, R,/Qj distributions 
will not cross the plane of symmetry. If it were not for the bending of the jet, 
on figure 17 (a),  at xf = 0 the values of Q,/Q, would constitute the values of the 
total vorticity. As the boundary layer in the pipe has positive vorticity in the 
half-space yf < 0, so do the values of R,/Rj and Q,/R, in the jet. 
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Y’ Y’ 
FIQWRE 17. Contours of QJR,. (a) 2’ = 0. (b) s‘ = 0.25. (G) x‘ = 0.50. (d) I’ = 1.00. 
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It was mentioned in the previous section that the cross-stream develops an 
induced negative vorticity in all three directions as it spills over the jet bound- 
aries. When one takes a very large contour around the entire flow such that the 
legs of the contour are in irrotational flow, we can deduce that each bound vortex 
must generate in the cross-stream an equal and opposite rotation with equal 
circulation. The presence of this induced flow with negative R,/Qj and R,/R, 
around the leading surface of the jet boundary can be seen in figures 17 (a)  and 
19. Figure 17(d ) ,  for the plane x' = 1-00, is the only distribution that gives the 
full cross-section of the jet and its wake. On that figure we can see the bound 
vortex, marked C ,  the location of the entrained fluid, marked D, and the location 
of the wake proper, marked F.  

I n  figure 18, at x' = 0, if the jet had not bent, 52, would have been zero every- 
where, because the total vorticity vector would have been in the x direction. 
The fact that Rv < 0 for most of the flow can be explained with the help of the 
sketch of a typical vortex-tube cross-section drawn on this figure. The bending 
in the x direction, the faster transverse growth in the y direction and the resulting 
loss of axial symmetry explain why R, =l= 0 a t  x' = 0. On figures 18(b)  and (c ) ,  
two distinct regions begin to appear, depending on the sign of 0,. The regions 
with positive values are those of wake entrainment and the wake proper. The 
region of negative values represents the rest of the flow. 

The original flows inside the pipe and upstream cross-stream are completely 
devoid of z vorticity. The appearance of mean z vorticity as seen in figure 19 can 
only be explained by tilting and stretching of the vorticity in the other two 
directions and by the action of the Reynolds stresses. For reasons already 
discussed, the cross-stream, as it deflects around the leading jet surface, acquires 
negative 52,. I n  figure 19 the bundling process that forms the bound vortex is 
seen clearly, and the values of a, in that tube is positive. By the time the flow 
reaches the plane x' = 0.50, the maximum value of R,/Rj is nearly that of the 
maximum total vorticity in figure 16. On dividing these two maximum values of 
R, and IRl, the angle in the x, z plane between the maximum vorticity vector, 
at x' = 0.50, and the x axis is found to be nearly 60") which is in close agreement 
with the 50" shown in figure 12. I n  fact, this correspondence of the direction of 
the vorticity vector and the orientation of the locus of the maximum vorticity 
at successive planes xr = constant is fair in the confines of the near field, and 
supports the concept that the bound vortex is an extension of the vorticity 
rings emanating from the pipe. 

10. The mean vorticity flux 

form more convenient for the calculation of the net flux of mean vorticity: 
The mean vorticity equation in three dimensions can be written in an integral 

+Q = S SZ(Q.dS) = Q(SZ.dS)- Sv- ( q . V ) w d V +  L- ( w . V ) q d V + v $  S VS2.dS,  

(7) 
where Q, SZ and q, w are the time-mean and time-dependent (fluctuating) values 
of thevelocityandvorticity vectors respectively. I n  essence (7) is a Reynolds-type 
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1 (-0.5, -3.0. 0.75) \ 
FIGURE 20. Control surfaces for calculation of flux. 

vorticity flux equation integrated over a finite control volume V with bounding 
surface X, shown in figure 20, The integral on the left side of this equation 
is the net flux of mean vorticity across the closed surface. The first term on the 
right is the change in vorticity flux caused by the stretching and tilting of the 
mean vorticity. The second and third terms are Reynolds-type terms, which in 
this strong turbulent field contribute significantly to the transport, stretching 
and tilting of the turbulent vorticity produced by the Reynolds stresses. The 
last term, the molecular difiusion of the mean vorticity flux, is negligible com- 
pared with the other terms. 

The vorticity flux in this flow is compared with the mean vorticity flux 
emanating from the pipe in the form of vortex rings distributed across the pipe 
cross-section. This is because they are part of the same system. At the pipe exit 
the vorticity is everywhere in the x, y plane; hence, because of symmetry the 
resultant vector vorticity flux through the exit cross-section is zero. Con- 
sequently, the flux that has been chosen for comparison purposes is of absolute 
magnitude IS21 = d W/dr. Then 
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Ifi,(Q.dS) Ifi,(Q.dS) Ifi,(Q.dS) / U ( a . d S )  IV(S2.dS)  IW(Q.dS)  

- - - - 0.289 - 
h i  h i  $0) 4nj 4ar h i  

In Closed 1 0.410 Out surface 0.284 0.169 0.080 0.527 - 
0.422 - 0.238 0.136 - 0.238 Infi)? 
- 0.044 - - 0.070 - 

TABLE 2. Mean vorticity flax across the control surfaces of the half-flow. 
Components of terms in (7). All values divided by $0, = 16.6 ms/sa. 

defines $aj. From the measured values of W at the pipe exit, this flux is calculated 
to be 33.2m3/s2 for the whole jet. The mean vorticity flux in half of the flow, 
16.6 m3/s2, given in table 1,  is the value used in table 2, which shows the balance 
(7).  From this value divided by and the area of the pipe, we obtained a value 
of the spatial mean vorticity a t  the pipe exit, SZj = 257Os-l, which has been 
used to make the vorticity values in this paper dimensionless. The vector sum 
of the vorticity fluxes in half of the pipe differs from & by a factor of 4, and is 
found to be 10.6 m3/s2; see table 1.  

Besides showing the balance (7),  table 2 shows the contribution to the flux 
integrals made by the plane z’ = 0.50 through the surface So, providing additional 
evidence of the very rapid development of SZs shown by the fact that the vortex 
advection and stretching and tilting, given in the third and sixth columns of 
table 2, are comparable in magnitude to the contribution from SZ,  advection, 
given in the first column. 

The tilting and stretching term $Q(G? . d S )  was initially zero everywhere a t  
the pipe exit, whereas by the time the flow reached the plane x’ = 1.00 it had a 
value 73 yo of that of the total mean vorticity flux in the pipe. This shows again 
the importance of the deformation of the vortex rings emanating from the pipe. 
The balance (7) indicates that 61 yo of the mean vorticity originally in the pipe 
is converted into turbulent vorticity up to x‘ = 1.00, which means that the flux 
of turbulent vorticity is of the same order as that of the mean vorticity. 

An alternative approach to this conclusion comes from an independent 
estimate of the ratio of the flux per unit area of turbulent vorticity to the flux 
per unit area of mean vorticity distributed in a typical region of this flow field. 
These distributions are shown in figure 21 along the symmetry line y‘ = 0 a t  
x‘ = 0.50. Distributions (a )  and ( b )  are those of the turbulent vorticity ( q ) / A Q j  
and the mean vorticity lG?\/Qj, where h is the microscale in the mean direction 
of the flow, while (q ) /A  is a measure of the root mean square of the turbulent 
vorticity. Thus we conclude that in this region chosen for comparison the tur- 
bulent vorticity is approximately three times the magnitude of the mean 
vorticity. Now the flux per unit area of turbulent vorticity will be ?/Anj at 
every z‘. The comparable flux per unit area of the mean vorticity will be QIG?//SZi. 
Before comparing these two distributions of flux per unit area we divide both 
expressions by Q, so that we can compare “hQQi and lG?l/Qj instead. Thus 
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FIGURE 21. Comparison of vorticity and vorticity flux along y’ = 0 a t  z’ = 0.50. 

comparison of curves ( b )  and (c) is equivalent to comparison of the fluxes per 
unit area of turbulent and mean vorticity. This comparison shows, first, that the 
two are of the same order as predicted by the previous argument concerning 
the total fluxes, and second, that a t  the jet boundary (z’ _N 2.25) the ratio of the 
turbulent vorticity flux to the mean vorticity flux changes from a value less 
than unity in the wake to a value larger than unity in the jet proper. 
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11. Conservation laws: mass, momentum and circulation 
From the digitized data on velocity and vorticity for the array of measured 

points in the control volume in figure 20, the mass flux and circulation were 
calculated for this isochoric flow, in order to have a precise global estimate of 
the accuracy of the measurements as well as of the numerical method. The mass 
flux across all the surfaces of the control volume balanced to within 2 yo, and the 
circulation balanced to within 2.4 yo. This we believe to be excellent considering 
the level of turbulence in many parts of the flow. 

The momentum fluxes across the same surfaces were also calculated. A n  
average radial pressure gradient APlAK and the radius of curvature of the jet 
within the near field investigated were calculated to be 460N/m3 and 2m 
respectively. 

12. Conclusions 
The leading surface of the jet, acting as a barrier to the cross-flow, is quanti- 

tatively very close to that of a rigid cylinder. For a jet issuing from an unskirted 
cylindrical pipe, the shed vortices are continuous with those in the pipe, and are 
characteristic of the pipe. 

It is proposed that, in addition to the jet’s maximum-velocity centre-line, the 
axes of maximum vorticity joining the centres of the bound vortices be con- 
sidered equally in the development of the flow. A new, more physical definition 
of the jet boundary is proposed. 

The major part of the change from complex lamellar flow in the pipe to a 
Beltrami flow in the jet takes place in the near field, within a few pipe diameters 
from the pipe exit. It is proposed that the bound vortices are extensions of the 
vorticity rings emanating from the pipe. 

The analysis of the vorticity flux shows that the turbulent vorticity is of the 
same order of magnitude as the mean vorticity, and that the mean tilting and 
stretching vorticity flux a t  one diameter downstream is about 75 yo of the total 
mean vorticity flux at the pipe exit. 
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